

Measures of Dispersion

Measures in Statistics

SLIATE

SLIATE

Definition

- *Measures of Dispersion* are Descriptive Statistics that describe the extent to which a numerical data is likely to vary about an average value.
 - The more similar the scores are to each other, the lower the measure of dispersion will be
 - The less similar the scores are to each other, the higher the measure of dispersion will be
 - In general, the more spread out a distribution is, the larger the measure of dispersion will be

Measures of Dispersion

- There are three main measures of dispersion:
 - 1. The Range
 - 2. The Interquartile range
 - 3. Standard deviation
- Other popular measures of dispersion:
 - The semi-interquartile range (SIR)/ (Quartile Deviation)
 - \circ Variance

The Range

• The *Range* is defined as the difference between the highest and lowest values of a dataset, $X_L - X_S$

```
Range = Highest Value – lowest Value

R = H - L

R=X_L - X_S
```

```
E.g.:
```

What is the range of the following data?: 4 8 1 6 6 2 9 3 6 9

Answer:

The largest score (H) is 9 The smallest score (L) is 1 Range is H-L = 9 - 1 = 8

When To Use the Range

- The range is used when;
 - you have ordinal data or
 - you are presenting your results to people with little or no knowledge of statistics
- The range is rarely used in scientific work as it is fairly insensitive.
 - It depends on only two scores in the set of data, X_L and X_S
 - Two very different sets of data can have the same range:
 1 1 1 1 9 vs 1 3 5 7 9

Quartiles

SLIATE

9

Calculating Quartiles

- A type of quantile which divides the number of data points into four parts, or quarters
- Every data set has three quartiles, which divide it into four (04) equal parts
- The data **must be ordered** from smallest to largest to compute quartiles.
- If the horizontal line can be thought of as a data set arranged in an ordered array, three quartiles can be identified, which together produce four separate parts or subset of equal size in the data set.

First Quartile (Q₁)– Ungrouped data

- The first quartile is the value below which, at most, 25% of the observations fall, and above which the remaining 75% can be found
- **E.g.:** Find the first quartile value. 38, 16, 24, 40, 58, 90, 30, 14, 41, 39, 61

Answer:

- 1. order the data set in ascending order-14,16, 24, 30, 38, 39, 40, 41, 58, 61, 90
- 2. Apply the formula- ("n" is the total number of observations in the array) $Q_1 = \frac{1}{4} (n+1)^{\text{th}}$ observation

$$Q_1 = \frac{1}{4} (11+1)^{\text{th}}$$
 observation 11=No. of items in the array

 $Q_1 = 3^{rd}$ observationSubset 1Subset 2Subset 3Subset 4Hence, $Q_1 = 24$ Q_1 Q_2 Q_3

Second Quartile (Q₂)– Ungrouped data

- The second quartile is the value below which, at most, 50% of the observations fall, and above which the remaining 50% can be found.
- The second quartile is right in the middle. Same as the Median

E.g.: Find the second quartile value. 38, 16, 24, 40, 58, 90, 30, 14, 41, 39, 61

Answer:

Third Quartile (Q₃) – Ungrouped data

• The third quartile is the value below which, at most, 75% of the observations fall, and above which the remaining 25% can be found.

E.g.: Find the third quartile value. 38, 16, 24, 40, 58, 90, 30, 14, 41, 39, 61

Hence, $Q_3 = 58$

Answer:

order the data set in ascending order-14,16, 24, 30, 38, 39, 40, 41, 58, 61, 90
Apply the formula-

 $Q_{3} = \frac{3}{4} (n+1)^{\text{th}} \text{ observation}$ $Q_{3} = \frac{3}{4} (11+1)^{\text{th}} \text{ observation}$ $9^{\text{th}} \text{ observation}$ $Subset 1 \qquad Subset 2$

Subset 3

 Q_2

Subset 4

 Q_3

Inter-Quartile Range - Ungrouped data

• The Interquartile range is the distance between the third quartile Q₃ and the first quartile Q₁.

Inter-quartile range = Third quartile - First quartile = Q₃ - Q₁

Quartile Deviation/ Semi-Interquartile Range

- Half of the Inter Quartile Range (Q₃ Q₂) is know as "*semi-interquartile range*" or "Quartile Deviation".
- The *semi-interquartile range* (or *SIR*) is defined as the difference of the first and third quartiles divided by two

Quartile deviation (SIR) =
$$\frac{\text{Third quartile} - \text{First quartile}}{2}$$

= $\frac{\text{Q3} - \text{Q1}}{2}$

Example 02

• Find the **inter-Quartile range** and **Quartile Deviation** of the data set below.

Answer_Example 02

First Quartile (Q ₁) Hence, Q₁	$= \frac{1}{4} (39+1)^{\text{th}} \text{ observation}$ = $\frac{1}{4} (40)^{\text{th}} \text{ observation}$ = $10^{\text{th}} \text{ observation}$ = 56		
Second Quartile (Q ₂)	$= \frac{1}{2} (39+1)^{\text{th}} \text{ observation}$ = $\frac{1}{2} (40)^{\text{th}} \text{ observation}$ = $20^{\text{th}} \text{ observation}$	Inter-Quartile Range	= $Q_3 - Q_1$ =58 - 56 = 2
Hence, Q_{12}	$= 20^{\circ\circ\circ} \text{ observation}$ $= 57$	Quartile Deviation	$= \frac{(Q_3 - Q_1)}{2}$
Hence, Q ₃	= $\frac{-}{4}$ (n+1) th observation = $\frac{3}{4}$ (40) th observation = 30 th observation = 58		-(36 - 36)/2 = 1

Survey Share of the second sec

Activity

• Find the **inter-Quartile range** and **Quartile Deviation** of the data set below using frequency distribution table.

Answer_Example 02

Values (X)	Frequency (f)	Cf
55	2	2
56	8	10
57	12	22
58	13	35
59	4	39

First Quartile (Q ₁)	$= \frac{1}{4} (39+1)^{\text{th}} \text{ observation}$ $= \frac{1}{4} (40)^{\text{th}} \text{ observation}$
	= 10^{th} observation
Hence, Q ₁	= 56
Third Quartile (Q_3)	$=\frac{3}{4}(n+1)^{th}$ observation
	$=\frac{3}{4}$ (40) th observation
	= 30^{th} observation
Hence, Q ₃	= 58

Inter-Quartile Range	= Q ₃ - Q ₁ =58 - 56 = 2
Quartile Deviation	$= \frac{(Q_3 - Q_1)}{2}$ =(58 - 56)/2 = 1

Activity 02

• Marks earned for Statistics by 15 students are listed below.

Marks	95	12	50	63	82	45	92
No. of students	2	1	2	4	3	2	1

Find;

- a) First Quartile
- b) Second Quartile
- c) Third Quartile
- d) Inter- Quartile range
- e) Quartile deviation

First Quartile (Q₁)– Grouped data

• The first quartile is the value below which, at most, 25% of the observations fall, and above which the remaining 75% can be found

First Quartile (Q₁) = L +
$$\frac{(\frac{n}{4} - CF)}{f}$$
 (i)

where

- L = lower boundary of the class containing Q_1 ,
- CF = cumulative frequency preceding class containing Q_1 ,
- f = frequency of class containing Q_1 ,
- i = size of class containing Q_1 .

Second Quartile – Grouped data

• The second quartile is right in the middle. Same as the median

Second Quartile (Q₂) = L +
$$\frac{(\frac{2n}{4} - CF)}{f}$$
 (i)

where

- L = lower boundary of the class containing Q_1 ,
- CF = cumulative frequency preceding class containing Q_1 ,
- f = frequency of class containing Q_1 ,
- i = size of class containing Q_1 .

Third Quartile – Grouped data

• The third quartile is the value below which, at most, 75% of the observations fall, and above which the remaining 25% can be found

Third Quartile (Q₃) = L +
$$\frac{(\frac{3n}{4} - CF)}{f}$$
 (i)

where

- L = lower boundary of the class containing Q_3 ,
- CF = cumulative frequency preceding class containing Q_3 ,
- f = frequency of class containing Q_3 ,
- = size of class containing Q_3 .

Activity 03

• Find the Inter quartile range and the quartile deviation.

Class limits	Frequency
0-10	2
10-20	3
20-30	5
30-40	2
40-50	6
50-60	2

Answer-Activity 02

• Find the Inter quartile range

Class limits	Frequency	CF
0-10	2	2
10-20	3	5
20-30	5	10
30-40	2	12
40-50	6	18
50-60	2	20

 $Q_1 = n/4 = 20/4 = 5^{th}$ observation

$$Q_1 = L + \frac{\frac{n}{4} - CF}{f} \quad (i)$$

$$Q_1 = 10 + \frac{\frac{20}{4} - 2}{3}$$
 (10)

$$Q_1 = 10 + 1$$
 (10)

Answer-Activity 02

• Find the Inter quartile range

Class limits	Frequency	CF
0-10	2	2
10-20	3	5
20-30	5	10
30-40	2	12
40-50	6	18
50-60	2	20

 $\langle \! \rangle$

 $Q_3 = (n/4)*3 = 20/4 = 15^{th}$ observation

$$Q_3 = 40 + \frac{15 - 12}{6}$$
 (10)

$$Q_3 = 40 + \frac{1}{2}$$
 (10)

Q₃ =45

Answer-Activity 02

• Find the Inter quartile range

Class limits	Frequency	CF
0-10	2	2
10-20	3	5
20-30	5	10
30-40	2	12
40-50	6	18
50-60	2	20

Inter-Quartile range = $Q_3 - Q_1$

= 45 – 20

= 25

=

Quartile Deviation

$$\frac{(Q_3 - Q_1)}{2}$$

$$=\frac{(45-20)}{2}$$

= 12.5

Activity 03

• Find the Inter-quartile range and quartile deviation

Class limits	Frequency
350-360	4
360-370	6
370-380	5
380-390	4
390-400	3

Activity 04

No. of complaints received to a customer care service center during 50 days are as below. Find the quartile deviation of this distribution.

No. of Complaints	No. of days
26-50	4
51-75	5
76-100	7
101-125	11
126-150	9
151-175	8
176-200	6

Answer Activity 04

No. of Complaints	No. of days	cf
26-50	4	4
51-75	5	9
76-100	7	16
101-125	11	27
126-150	9	36
151-175	8	44
176-200	6	50

 $Q_1 class = 76-100$, Hence, $Q_1 = 88$

Q₂ class = 101-125 , Hence, Q₂ = 120.95

Q₃ class = 151-175 , Hence, Q₃ = 155.19

Usage of Quartiles

- Quartiles often are used in sales and survey data to divide populations into groups
- The quartile deviation helps to examine the spread of a distribution about a measure of its central tendency, usually the mean or the average. Hence, it is in use to give you an idea about the range within which the central 50% of your sample data lies.

Variance and Standard Deviation

Variance– Ungroup Data

• Variance;

- is a statistical measurement of the spread between numbers in a data set and it is the average of the squared differences from the mean.
- measures how far each number in the set is from the mean and thus from every other number in the set.
- Variance of the POPULATION is denoted by " σ^2 " (sigma squared)
- Variance of a SAMPLE is denoted by "s²"

Standard Deviation (SD) σ – Ungroup Data

Standard Deviation;

- is a statistical measure of how dispersed the data is in relation to the mean and it is the square root of the variance.
- A low standard deviation indicates that the values tend to be close to the mean while_a high standard deviation indicates that the values are spread out over a wider range.
- abbreviated SD
- represented in mathematical texts and equations by the lower case Greek letter sigma σ
- can be computed by deriving the positive square root of Variance
- Standard Deviation of the POPULATION is denoted by " σ "
- Standard Deviation of a SAMPLE is denoted by "s"

Population Variance and Standard deviation – Ungrouped data

• The population variance is the mean of the squared deviations of the observations from their population mean.

$$\sigma^2$$
 (Variance) = $\frac{\sum (Xi - \mu)^2}{n}$ OR $\sigma^2 = \frac{\sum x^2}{n} - \mu^2$

• The population standard deviation

$$\sigma \text{(SD)} = \sqrt{\sigma^2} = \sqrt{\frac{\sum (X_i - \mu)^2}{n}}$$

Sample Variance and Standard deviation – Ungrouped data

• The sample variance is

s² (Variance) =
$$\frac{\sum (Xi - \overline{x})^2}{n-1}$$

• The sample standard deviation is

s (SD) =
$$\sqrt{\mathbf{S}^2} = \sqrt{\frac{\sum (Xi - \overline{x})^2}{n-1}}$$

Variance and Standard Deviation – Ungroup Data

Method 01

• *Variance* is defined as the average of the square deviations:

Variance (
$$\sigma^2$$
) = $\frac{\sum (x-\mu)^2}{n}$

Where;

- μ = the mean (population)
- x = stands for each data value in turn
- *n* = the number of data values

Standard Deviation (
$$\sigma$$
) = $\sqrt{\frac{\sum(x-\mu)^2}{n}} = \sqrt{\sigma^2}$

Variance and Standard Deviation – Ungroup Data

Method 02

• *Variance* is defined as the average of the square deviations:

Variance (
$$\sigma^2$$
) = $\frac{\sum x^2}{n} - \mu^2$

Where;

- μ = the mean (population)
- x = stands for each data value in turn
- *n* = the number of data values

Standard Deviation (
$$\sigma$$
) = $\sqrt{\frac{\sum x^2}{n} - \mu^2} = \sqrt{\sigma^2}$

Example

- 6, 7, 10, 11, 11, 13, 16, 18, 25
- 1. Find the sample variance and sample Standard Deviation of given data set
- 2. Find the population variance and population SD of given data set.

Answer for Q1

6, 7, 10, 11, 11, 13, 16, 18, 25

 $\langle \! \rangle$

• Frist find mean
$$\bar{x} = \frac{\sum x}{n} = \frac{117}{9} = 13$$

x		$x-\overline{x}$	$(x-\overline{x})^2$
6		-7	49
7		-6	36
10	=13	-3	9
11	= Ut	-2	4
11	/ea	-2	4
13	2	0	0
16		3	9
18		5	25
25		12	144

Variance (s²) = $\frac{\sum (x - \overline{x})^2}{n} = \frac{(49 + 36 + 9 + 4 + 4 + 0 + 9 + 25 + 144)}{9}$ = $\frac{280}{8}$ = 35

. 7

Standard Deviation (s)
$$=\sqrt{\frac{\sum(x-\overline{x})^2}{n}} =\sqrt{s^2}$$

 $=\sqrt{35}$
 $= 5.9$

Answer for Q2 - method 01 (σ^2) = $\frac{\sum (x-\mu)^2}{n}$

6, 7, 10, 11, 11, 13, 16, 18, 25

 $\langle \! \! \rangle$

• Frist find mean
$$\mu = \frac{\sum x}{n} = \frac{117}{9} = 13$$

Variance (σ^2) = $\frac{\sum (x-\mu)^2}{n}$ = $\frac{(49+36+9+4+4+0+9+25+144)}{9}$

x		$x-\overline{\mu}$	$(x-\mu)^2$
6		-7	49
7		-6	36
10	=13	-3	9
11	= Ut	-2	4
11	/ea	-2	4
13	2	0	0
16		3	9
18		5	25
25		12	144

Standard Deviation (
$$\sigma$$
) = $\sqrt{\frac{\sum (x-\mu)^2}{n}} = \sqrt{\sigma^2}$
= $\sqrt{31.11}$
= 5.57

 $=\frac{280}{9}$

= 31.11

Answer for Q2- Method 02 $\sigma^2 = \frac{\sum x^2}{n} - \mu^2$

• Frist find mean
$$\mu = \frac{\sum x}{n} = \frac{117}{9} = 13$$

SLIATE

Activity 05

Marks obtained by students in class have been given. Find the standard deviation of marks

65, 70, 62, 90, 92, 50, 48, 32, 60, 71

*σ*² = 304.2

σ = 17.44

Variance and Standard Deviation – Grouped Data

Method 01

• Variance is defined as the average of the square deviations:

Variance (
$$\sigma^2$$
) = $\frac{\sum f(x-\mu)^2}{n}$

Where;

- μ = the mean
- x = stands for each data value in turn
- *n* = the number of data values

Standard Deviation (
$$\sigma$$
) = $\sqrt{\frac{\sum f(x-\mu)^2}{n}} = \sqrt{\sigma^2}$

Variance and Standard Deviation – Grouped Data

Method 02

• *Variance* is defined as the average of the square deviations:

Variance (
$$\sigma^2$$
) = $\frac{\sum fx^2}{n} - \mu^2$

Where;

- μ = the mean
- x = stands for each data value in turn
- *n* = the number of data values

Standard Deviation (
$$\sigma$$
) = $\sqrt{=\frac{\sum fx^2}{n} - \mu^2} = \sqrt{\sigma^2}$

Example

• Find an estimate of the variance and standard deviation of the following data for the marks obtained in a test by 88 students

Marks	Frequency (f)
$0 \le x < 10$	6
$10 \le x < 20$	16
$20 \le x < 30$	24
$30 \le x < 40$	25
$40 \le x < 50$	17
Total	88

Answer - Method 01----Using
$$\left[\sigma^2 = \frac{\sum f(x-\mu)^2}{n} \right]$$

• Frist find mean
$$\bar{x} = \frac{\sum fx}{n} = \frac{2510}{88} = 28.52$$

SLIATE THECCOLO

Marks	Frequency (f)	Mid Point (x)	fx	<mark>9</mark> tely)	<i>х</i> – µ	$(x - \mu)^2$	$f(x-\mathbf{\mu})^2$
$0 \le x < 10$	6	5	30	= <mark>2</mark> nat	-24	576	3456
$10 \le x < 20$	16	15	240	ean oxir	-14	196	3136
$20 \le x < 30$	24	25	600	Me	-4	16	384
$30 \le x < 40$	25	35	875	(ap	6	36	900
$40 \le x < 50$	17	45	765		16	256	4352
Total	88		2510				12228

• Variance
$$\sigma^2 = \frac{\sum f(x-\mu)^2}{n}$$
$$= \frac{12228}{88}$$
$$= 138.95$$

SLIATE SUIATE

• Standard Deviation (
$$\sigma$$
) = $\sqrt{\frac{\sum f(x-\mu)^2}{n}}$ = $\sqrt{Variance}$
= $\sqrt{138.95}$
= 11.78

Answer - Method 02----Using
$$[\sigma^2 = \frac{\sum fx^2}{n} - \mu^2]$$

• Frist find mean
$$\mu = \frac{\sum fx}{n} = \frac{2510}{88} = 28.52$$

SLIATE THECCOLO

Marks	Frequency (f)	Mid Point (x)	fx	$\sum fx^2$
$0 \le x < 10$	6	5	30	150
$10 \le x < 20$	16	15	240	3600
$20 \le x < 30$	24	25	600	15000
$30 \le x < 40$	25	35	875	30625
$40 \le x < 50$	17	45	765	34425
Total	88		2510	83800

• Variance
$$\sigma^2 = \frac{1}{2}$$

SLIAT

$$=\frac{\sum fx^2}{n}-\mu^2$$

$$=\frac{83800}{88}-28.52^2 = 952.27-813.39$$

= 138.88

• Standard Deviation (σ)

$$= \sqrt{\frac{\sum (x-\mu)^2}{n}} = \sqrt{\text{Variance}}$$
$$= \sqrt{138.88}$$

Activity 06

ABC company's sales volume in 100 days is listed as below. Find the Standard Deviation.

Sales (Rs. 000)	No. of days
10 - 20	5
20 – 30	10
30 - 40	20
40 – 50	30
50- 60	20
60 – 70	10
70 – 80	5
Total	100

Summary_Quartiles:

Summary_Variance & Standard Deviation:

 $\boldsymbol{\sigma} = \sqrt{\boldsymbol{\sigma}^2} = \sqrt{\frac{\sum (x-\mu)^2}{n}}$