
Part 3

Enhanced Entity-
Relationship (EER) Model

Introduction

• It is very harder to apply the conventional ER paradigm
for database modeling as data complexity rises today.

• The existing ER model needs to be enhanced or improved
in order for it to better handle the complicated
application in order to reduce the modeling complexity.

• The requirements and complexity of complicated
databases are represented using enhanced entity-
relationship diagrams, which are sophisticated database
diagrams very similar to standard ER diagrams.

Enhanced ER Model

▪ Enhanced entity-relationship diagrams are advanced
database diagrams very similar to regular ER diagrams which
represent the requirements and complexities of complex
databases.

▪ ER model was introduced for modeling most common
business problems and has widespread use.

▪ The term enhanced entity relationship model is used to
identify the result for extending the original ER model with
the new modeling constructs.

▪ It is a diagrammatic technique for displaying the Sub Class
and Super Class; Specialization and Generalization; Union or
Category; Aggregation etc.

Super types and Sub types:

•Supertype - an entity type that relates to one or more
subtypes.

•Subtype - a subgroup of entities with unique attributes.

•Sub class and Super class relationship leads the concept of
Inheritance.

•Inheritance - the concept that subtype entities inherit the
values of all supertype attributes.

Note: subtype instances are also classified as supertype
instances.

1. Super Class
• Super class is an entity type that has a relationship with

one or more subtypes.
• An entity cannot exist in database merely by being

member of any super class.

For example: Shape super class is having sub groups as
Square, Circle, Triangle.

2. Sub Class
• Sub class is a group of entities with unique attributes.
• Sub class inherits properties and attributes from its super

class.

For example: Square, Circle, Triangle are the sub class of
Shape super class.



Constraints –
There are two types of constraints on the “Sub-class”
relationship.

1.Total or Partial –
• A sub-classing relationship is total if every super-class entity is

to be associated with some sub-class entity, otherwise partial.
• Sub-class “job type based employee category” is partial sub-

classing – not necessary every employee is one of (secretary,
engineer, and technician),
i.e. union of these three types is a proper subset of all
employees.

• Whereas other sub-classing “Salaried Employee AND Hourly
Employee” is total; the union of entities from sub-classes is
equal to the total employee set,
i.e. every employee necessarily has to be one of them.

Constraints –

2. Overlapped or Disjoint –

• If an entity from a super-set can be related (can occur) in
multiple sub-class sets, then it is overlapped sub-classing,
otherwise disjoint.

• The disjointness between sub class and super class is
denoted with symbol, where the d in the circle stands
for disjoint. The d notation also applies to user-defined
subclasses of a specialization that must be disjoint, as
illustrated by the specialization {HOURLY_EMPLOYEE,
SALARIED_EMPLOYEE} in Figure 4.1.

• Both the examples: job-type based and salaries/hourly
employee sub-classing are disjoint.

Example:
This example instance of “sub-class” relationships. Here we have
three sets of employees: Secretary, Technician, and Engineer. The
employee is a super-class of the rest three sets of individual sub-class
is a subset of Employee set.

Example cont..:

• An entity belonging to a sub-class is related to some super-class
entity. For instance emp, no 1001 is a secretary, and his typing
speed is 68. Emp no 1009 is an engineer (sub-class) and her
Eng_Type is “Electrical”, so forth.

• Sub-class entity “inherits” all attributes of super-class; for example,
employee 1001 will have attributes eno, name, salary, and typing
speed.



For example,
The entities that are members of the EMPLOYEE entity type may
be distinguished further into SECRETARY, ENGINEER, MANAGER,
TECHNICIAN, SALARIED_EMPLOYEE, HOURLY_EMPLOYEE, and so
on. The set or collection of entities in each of the latter
groupings is a subset of the entities that belong to the
EMPLOYEE entity set, meaning that every entity that is a
member of one of these subgroupings is also an employee. We
call each of these subgroupings a subclass or subtype of the
EMPLOYEE entity type, and the EMPLOYEE entity type is called
the superclass or supertype for each of these subclasses,
We call the relationship between a superclass and any one of its
subclasses a superclass/subclass or supertype/subtype or
simply class/subclass relationship. The subclasses that define a specialization are attached by lines to a circle that

represents the specialization, which is connected in turn to the superclass. The subset
symbol on each line connecting a subclass to the circle indicates the direction of the
superclass/subclass relationship.

• The set of subclasses that forms a specialization is defined on the
basis of some distinguishing characteristic of the entities in the
superclass.

• For example, the set of subclasses {SECRETARY, ENGINEER,
TECHNICIAN} is a specialization of the superclass EMPLOYEE that
distinguishes among employee entities based on the job type of
each employee.

• We may have several specializations of the same entity type
based on different distinguishing characteristics.

• For example, another specialization of the EMPLOYEE entity type
may yield the set of subclasses {SALARIED_EMPLOYEE,
HOURLY_EMPLOYEE}; this specialization distinguishes among
employees based on the method of pay.

There are two main reasons for including class/subclass
relationships and specializations.

The first reson is that certain attributes may apply to some
but not all entities of the superclass entity type. A subclass
is defined in order to group the entities to which these
attributes apply. The members of the subclass may still
share the majority of their attributes with the other
members of the superclass.
For example,
in Figure 4.1 the SECRETARY subclass has the specific
attribute Typing_speed, whereas the ENGINEER subclass
has the specific attribute Eng_type, but SECRETARY and
ENGINEER share their other inherited attributes from the
EMPLOYEE entity type.

The second reason for using subclasses is that some
relationship types may be participated in only by
entities that are members of the subclass.

For example, if only HOURLY_EMPLOYEES can belong to
a trade union, we can represent that fact by creating
the subclass HOURLY_EMPLOYEE of EMPLOYEE and
relating the subclass to an entity type TRADE_UNION
via the BELONGS_TO relationship type, as illustrated
in Figure 4.1.

Specialization and Generalization

1. Generalization

• Generalization is the process of generalizing the entities
which contain the properties of all the generalized entities.

• It is a bottom up approach, in which two lower level entities
combine to form a higher level entity.

• Generalization is the reverse process of Specialization.

• It defines a general entity type from a set of specialized
entity type.

• It minimizes the difference between the entities by
identifying the common features.



Specialization and Generalization

1.Generalization

For example:

In the above example, Tiger, Lion, Elephant can all be generalized as 
Animals.

Specialization and Generalization

2. Specialization

• Specialization is a process that defines a group entities
which is divided into sub groups based on their
characteristic.

• It is a top down approach, in which one higher entity
can be broken down into two lower level entity.

• It maximizes the difference between the members of an
entity by identifying the unique characteristic or
attributes of each member.

• It defines one or more sub class for the super class and
also forms the superclass/subclass relationship.

Specialization and Generalization

2. Specialization

For example:

In the above example, Employee can be specialized as Developer or
Tester, based on what role they play in an Organization.

Representing Specialization
The circle is another 
symbol for IsA.

Representing Specialization:-

The circle is another symbol for IsA.

• E-ER diagram – shows specialization circle (IsA
relationship), and inheritance symbol (subset
symbol).

• Specialization can also involve just one subclass – no
need for circle, but show inheritance symbol.

• The sub-entities are most likely invoking the
disjointedness constraint.



Constraints and Characteristics of Specialization
and Generalization

For example,
If the EMPLOYEE entity type has an attribute Job_type, as
shown in Figure 4.4, we can specify the condition of
membership in the SECRETARY subclass by the condition
(Job_type = ‘Secretary’), which we call the defining
predicate of the subclass.
This condition is a constraint specifying that exactly those
entities of the EMPLOYEE entity type whose attribute value
for Job_type is ‘Secretary’ belong to the subclass. We
display a predicate-defined subclass by writing the
predicate condition next to the line that connects the
subclass to the specialization circle.

• If all subclasses in a specialization have membership condition on
same attribute of the superclass, specialization is called an
attribute-defined specialization
• Attribute is called the defining attribute of the specialization
• Example: JobType is the defining attribute of the specialization

{SECRETARY, TECHNICIAN, ENGINEER} of EMPLOYEE
• Display an attribute-defined specialization by placing the

defining attribute name next to the arc from the circle to the
superclass, as shown in Figure 4.4.

• If no condition determines membership, the subclass is called
user-defined
• Membership in a subclass is determined by the database users

by applying an operation to add an entity to the subclass
• Membership in the subclass is specified individually for each

entity in the superclass by the user

Constraints and Characteristics of Specialization
and Generalization

Displaying an attribute-defined specialization in EER
diagrams



Where the d in the circle stands for disjoint. The d notation
also applies to user-defined subclasses of a specialization
that must be
disjoint, as illustrated by the specialization
{HOURLY_EMPLOYEE, SALARIED_EMPLOYEE} in Figure 4.1.
If the subclasses are not constrained to be disjoint, their
sets of entities may be overlapping; that is, the same (real-
world) entity may be a member of more than one subclass
of the specialization. This case, which is the default, is
displayed by placing an o in the circle, as shown in Figure
4.5.

Constraints and Characteristics of Specialization
and Generalization

Slide 4- 34

Example of disjoint partial Specialization

Slide 4- 35

Example of overlapping total Specialization
The second constraint on specialization is called the
completeness (or totalness) constraint, which may be total or
partial.

A total specialization constraint specifies that every entity in the
superclass must be a member of at least one subclass in the
specialization.

For example, if every EMPLOYEE must be either an
HOURLY_EMPLOYEE or a SALARIED_EMPLOYEE, then the
specialization {HOURLY_EMPLOYEE, SALARIED_EMPLOYEE} in
Figure 4.1 is a total specialization of EMPLOYEE.

This is shown in EER diagrams by using a double line to connect
the superclass to the circle. A single line is used to display a
partial specialization, which allows an entity not to belong to
any of the subclasses.

Constraints and Characteristics of Specialization and
Generalization

A single line is used to display a partial specialization,
which allows an entity not to belong to any of the
subclasses.

For example, if some EMPLOYEE entities do not belong to
any of the subclasses {SECRETARY, ENGINEER,
TECHNICIAN} in Figures 4.1 and 4.4, then that
specialization is partial.

Constraints and Characteristics of Specialization and
Generalization



Constraints and Characteristics of Specialization and
Generalization

Certain insertion and deletion rules apply to specialization
(and generalization) as a consequence of the constraints
specified earlier. Some of these rules are as follows:
• Deleting an entity from a superclass implies that it is

automatically deleted from all the subclasses to which it
belongs.

• Inserting an entity in a superclass implies that the entity is
mandatorily inserted in all predicate-defined (or attribute-
defined) subclasses for which the entity satisfies the
defining predicate.

• Inserting an entity in a superclass of a total specialization
implies that the entity is mandatorily inserted in at least
one of the subclasses of the specialization.

Slide 4- 42

Specialization/Generalization Hierarchies, Lattices
& Shared Subclasses

• A subclass may itself have further subclasses
specified on it
• forms a hierarchy or a lattice

• Hierarchy has a constraint that every subclass has
only one superclass (called single inheritance); this
is basically a tree structure

• In a lattice, a subclass can be subclass of more than
one superclass (called multiple inheritance)

Specialization and Generalization Hierarchies
and Lattices

• A subclass itself may have further subclasses specified on it,
forming a hierarchy or a lattice of specializations.

• For example, in Figure 4.6 ENGINEER is a subclass of EMPLOYEE
and is also a superclass of ENGINEERING_MANAGER; this
represents the real-world constraint that every engineering
manager is required to be an engineer.

• A specialization hierarchy has the constraint that every subclass
participates as a subclass in only one class/subclass relationship;
that is, each subclass has only one parent, which results in a tree
structure or strict hierarchy.

• In contrast, for a specialization lattice, a subclass can be a
subclass in more than one class/subclass relationship. Hence,
Figure 4.6 is a lattice.

Specialization and Generalization Hierarchies
and Lattices

Shared Subclass “Engineering_Manager”



Specialization and Generalization Hierarchies
and Lattices

Category or Union

• Category represents a single super class or sub class
relationship with more than one super class.

• It can be a total or partial participation.

For example

Car booking, Car owner can be a person, a bank (holds a
possession on a Car) or a company.

Category (sub class) → Owner is a subset of the union of
the three super classes → Company, Bank, and Person. A
Category member must exist in at least one of its super
classes.

Category or Union Category or Union

• Subclass related to a collection of super-classes.
• Each instance of subclass belongs to one, not all, of

the super-classes.
• Super-classes form a union or category.
• Ex. A Sponsor may be a team, a department, or a

club.
• Each Sponsor entity instance is a member of one of

these super-classes, so Sponsor is a subclass of the
union of Team, Dept, Club

• EER diagram - connect each superclass to union circle,
connect circle to subclass, with subset symbol on line
between circle and subclass.

Category or Union Example Category or Union Example



Aggregation

• In DBMS (Database Management System), aggregation is
the process of joining two or more entities to create a
more meaningful new entity.

• The aggregate method is used when the entities do not
make sense on their own. In order to produce
aggregation between two entities that cannot be used
for their own attributes, a relationship is constructed
and the end product is created into a new entity.

• Any form of relationship can be used, such as SUM, AVG,
AND, OR, and so on. A wide range of tools are available
on the market for table table aggregation.

• A relationship represents a connection between two entity types
that are conceptually at the same level.

• Sometimes you may want to model a 'has-a,' 'is-a' or 'is-part-of'
relationship, in which one entity represents a larger entity (the
'whole') that will consist of smaller entities (the 'parts’).

• This special kind of relationship is termed as an aggregation.

• Aggregation does not change the meaning of navigation and
routing across the relationship between the whole and its parts.

• An example of aggregation is the 'Teacher' entity following the
'syllabus' entity act as a single entity in the relationship. In simple
words, aggregation is a process where the relation between two
entities is treated as a single entity.

What is Aggregation?

What is Aggregation?

In this example, the patient cannot work on his own. He has to form a
relationship with the doctor to get a diagnosis. The doctor also cannot
perform a diagnosis without the patient. In the future, the doctor will need
data about the patient’s history, that will require him to collect it from a
filing system.
The last entity (patient’s history) ensures that the entire system is
functional. Getting the patient’s history cannot be done without a diagnosis
from the doctor and a filing system.

• In aggregation, the relation between two entities is
treated as a single entity. In aggregation, relationship
with its corresponding entities is aggregated into a
higher level entity.

• For example: Center entity offers the Course entity act
as a single entity in the relationship which is in a
relationship with another entity visitor.
In the real world, if a visitor visits a coaching center
then he will never enquiry about the Course only or
just about the Center instead he will ask the enquiry
about both.

Aggregation
• For example: Center entity offers the Course entity act as a single entity in

the relationship which is in a relationship with another entity visitor. In the
real world, if a visitor visits a coaching center then he will never enquiry
about the Course only or just about the Center instead he will ask the
enquiry about both.

Aggregation



An example of aggregation is the Car and Engine entities.
A car is made up of an engine.
The car is the whole and the engine is the part.
Aggregation does not represent strong ownership. This means, a
part can exist on its own without the whole. There is no stronger
ownership between a car and the engine. An engine of a car can be
moved to another car.

Aggregation

A line with a diamond at the end is used to represent aggregation.

For example, the Car-Engine relationship would be represented as 
shown below:

Incorrect

Not allowed in ER

Not allowed in ER

Correct in ER

Composition

Composition is a form of aggregation that
represents an association between entities,
where there is a strong ownership.

For example, a tree and a branch have a
composition relationship. A branch is 'part' of a
'whole' tree - we cannot cut the branch and add
it to another tree.

Enhanced Entity-Relationship (EER) Model

• Additional entity types
• Superclass: including one or more distinct subgroups in the 

data model
• Subclass: a distinct subgroup of an entity type in the data 

model

• Attribute Inheritance
• Specialization hierarchy (specialization: maximizing the 

differences between members of an entity by identifying their 
distinguishing characteristics)

• Generalization hierarchy (generalization: minimizing the 
differences between entities by identifying their common 
characteristics)

• Is-A hierarchy 

• Constraints on specialization/generalization 
• Participation (mandatory, optional)
• Disjoint: disjoint (or), non-disjoint (and)

• Other
• Aggregation (has a or is part of)
• Composition (strong ownership of aggregation)

LMS Slide

LMS Slide



LMS Slide LMS Slide

LMS Slide LMS Slide

LMS Slide

Design Steps

• Identify
• Entity types, relationship types

• Cardinality and participation constraints

• Attributes

• Keys

• Specialize/generalize

• EER diagram

• EER model example

LMS Slide



Exercise:

• Create an enhanced ER diagram for a rental
management using following entities:
• Rental agency

• Staff
• Part time

• Full time

• Owner

• Renter

• Property
• Business

• Home

LMS Slide

A Sample Database Application

• COMPANY
• Employees, departments, and projects

• Company is organized into departments

• Department controls a number of projects

• Employee: store each employee’s name, Social
Security number, address, salary, sex (gender),
and birth date

• Keep track of the dependents of each employee

LMS Slide

LMS Slide


